Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
129th ASEE Annual Conference and Exposition: Excellence Through Diversity, ASEE 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2046757

ABSTRACT

This NSF-IUSE exploration and design project began in fall 2018 and features cross-disciplinary collaboration between engineering, math, and psychology faculty to develop learning activities with hands-on models and manipulatives. We are exploring how best to design these activities to support learners' development of conceptual understanding and representational competence in integral calculus and engineering statics, two foundational courses for most engineering majors. A second goal is to leverage the model-based activities to scaffold spatial skills development in the context of traditional course content. As widely reported in the literature, well-developed spatial abilities correlate with student success and persistence in many STEM majors. We provided calculus students in selected intervention sections taught by four instructors at three different community colleges with take-home model kits that they could reference for a series of asynchronous learning activities. Students in these sections completed the Purdue Spatial Visualization Test: Rotations (PSVT:R) in the first and last weeks of their course. We also administered the assessment in multiple control sections (no manipulatives) taught by the same faculty. This paper analyzes results from fall 2020 through fall 2021 to see if there is any difference between control and intervention sections for the courses as a whole and for demographic subgroups including female-identifying students and historically-underserved students of color. All courses were asynchronous online modality in the context of the COVID-19 pandemic. We find that students in intervention sections of calculus made slightly larger gains on the PSVT:R, but this result is not statistically significant as a whole or for any of the demographic subgroups considered. We also analyzed final course grades for differences between control and intervention sections and found no differences. We found no significant effect of the presence of the model-based activities leading to increased PSVT:R gains or improved course grades. We would not extend this conclusion to face-to-face implementation, however, due primarily to the compromises made to adapt the curriculum from in-person group learning to asynchronous individual work and inconsistent engagement of the online students with the modeling activities. © American Society for Engineering Education, 2022.

2.
129th ASEE Annual Conference and Exposition: Excellence Through Diversity, ASEE 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2045303

ABSTRACT

Mechanics instructors frequently employ hands-on learning with goals such as demonstrating physical phenomena, aiding visualization, addressing misconceptions, exposing students to “real-world” problems, and promoting an engaging classroom environment. This paper presents results from a study exploring the importance of the “hands-on” aspect of a hands-on modeling curriculum we have been developing that spans several topics in statics. The curriculum integrates deep conceptual exploration with analysis procedure tutorials and aims to scaffold students' development of representational competence, the ability to use multiple representations of a concept as appropriate for learning, problem solving, and communication. We conducted this study over two subsequent terms in an online statics course taught in the context of remote learning amidst the COVID-19 pandemic. The intervention section used a take-home adaptation of the original classroom curriculum. This adaptation consisted of eight activity worksheets with a supplied kit of manipulatives and model-building supplies students could use to construct and explore concrete representations of figures and diagrams used in the worksheets. In contrast, the control section used activity worksheets nearly identical to those used in the hands-on curriculum, but without the associated modeling parts kit. We only made minor revisions to the worksheets to remove reference to the models. The control and intervention sections were otherwise identical in how they were taught by the same instructor. We compare learning outcomes between the two sections as measured via pre-post administration of a test of 3D vector concepts and representations called the Test of Representational Competence with Vectors (TRCV). We also compare end of course scores on the Concept Assessment Test in Statics (CATS) and final exam scores. In addition, we analyze student responses on two “multiple choice plus explain” concept questions paired with each of five activities covering the topics of 3D moments, 3D particle equilibrium, rigid body equilibrium (2D and 3D), and frame analysis (2D). The mean pre/post gain across all ten questions was higher for the intervention section, with the largest differences observed on questions relating to 3D rigid body equilibrium. Students in the intervention section also made larger gains on the TRCV and scored better on the final exam compared to the control section, but these results are not statistically significant perhaps due to the small study population. There were no appreciable differences in end-of-course CATS scores. We also present student feedback on the activity worksheets that was slightly more positive for the versions with the models. © American Society for Engineering Education, 2022

3.
2021 ASEE Virtual Annual Conference, ASEE 2021 ; 2021.
Article in English | Scopus | ID: covidwho-1696121

ABSTRACT

This NSF-IUSE exploration and design project began in fall 2018 and features cross-disciplinary collaboration between engineering, math, and psychology faculty to develop learning activities with 3D-printed models, build the theoretical basis for how they support learning, and assess their effectiveness in the classroom. We are exploring how such models can scaffold spatial skills and support learners' development of conceptual understanding and representational competence in calculus and engineering statics. We are also exploring how to leverage the model-based activities to embed spatial skills training into these courses. The project's original focus was on group learning in classroom activities with shared manipulatives. After a year of development and pilot activities, we commenced data collection in classroom implementations of a relatively mature curriculum starting fall 2019. Data collection ended abruptly in March 2020 when we had to shift gears in the context of a shift to online learning amid the COVID-19 pandemic. With uncertainty as to when the use of shared hands-on models in a collaborative in-person learning context would be feasible again, it was clear a change in approach would be necessary. We have since developed new versions of the models and associated curriculum designed for independent at-home use in the context of online learning. We implemented the new curricula in an online statics courses in fall 2020 and in multiple sections of online calculus courses in winter 2021. In this paper, we describe our strategies for implementing hands-on learning at home. We also present some example activities and compare the approach to the face-to-face versions. Finally, we compare student feedback results on the online activities to analogous feedback data from the classroom implementations and discuss implications for the anticipated return to face-to-face learning in the classroom. © American Society for Engineering Education, 2021

SELECTION OF CITATIONS
SEARCH DETAIL